Sternbewegung um schwarzes Loch in der Milchstraße

In der Milchstraße gibt es ein supermassereiches schwarzes Loch, welches die Bewegung der Sterne in der Nachbarschaft beeinflusst. Mit dem Very Large Telescope Interferometer (VLTI) der Europäischen Südsternwarte (ESO) sind nun die bisher tiefsten und schärfsten Bilder der Region um das supermassereiche schwarze Loch im Zentrum unserer Galaxie gelungen. Die neuen Bilder zoomen 20-mal näher heran, als es vor dem VLTI möglich war, und haben den Astronomen geholfen, einen noch nie zuvor gesehenen Stern in der Nähe des schwarzen Lochs zu entdecken. Indem das Team die Bahnen der Sterne im Zentrum unserer Milchstraße nachverfolgte, hat es die bisher genaueste Messung der Masse des schwarzen Lochs vorgenommen.


Anzeige

"Wir wollen mehr über das schwarze Loch im Zentrum der Milchstraße, Sagittarius A*, erfahren: Wie massereich ist es genau? Dreht es sich? Verhalten sich die Sterne in seinem Umfeld genau so, wie wir es aufgrund von Einsteins allgemeiner Relativitätstheorie erwarten? Der beste Weg, diese Fragen zu beantworten, ist die Beobachtung von Sternen auf Bahnen in der Nähe des supermassereichen schwarzen Lochs. Hier zeigen wir, dass wir das mit einer höheren Präzision als je zuvor erreichen können", erklärt Reinhard Genzel, Direktor am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Deutschland, der 2020 den Nobelpreis für die Erforschung von Sagittarius A* erhielt.

Die neuesten Ergebnisse von Genzel und seinem Team, die ihre drei Jahrzehnte andauernde Untersuchung von Sternen, die das supermassereiche schwarze Loch der Milchstraße umkreisen, erweitern, werden heute in zwei Artikeln in Astronomy & Astrophysics veröffentlicht.

Auf der Suche nach weiteren Sternen in der Nähe des schwarzen Lochs entwickelte das Team, das als GRAVITY-Kollaboration bekannt ist, eine neue Analysetechnik, mit der sie die bisher tiefsten und schärfsten Bilder unseres galaktischen Zentrums erhalten haben. „Das VLTI bietet uns eine unglaubliche räumliche Auflösung, und mit den neuen Bildern gelangen wir tiefer als je zuvor. Wir sind verblüfft von der Detailgenauigkeit und der Anzahl der Sterne, die um das schwarze Loch herum zu sehen sind", erklärt Julia Stadler, Wissenschaftlerin am Max-Planck-Institut für Astrophysik in Garching, die während ihrer Zeit am MPE die Aufnahmen des Teams leitete. Bemerkenswerterweise fanden sie einen Stern namens S300, der zuvor noch nie gesehen worden war. Das zeigt, wie leistungsfähig diese Methode ist, wenn es darum geht, sehr lichtschwache Objekte in der Nähe von Sagittarius A* aufzuspüren.

Sternbewegung um supermassereiches schwarzes Loch in der Milchstraße
Sternbewegung um supermassereiches schwarzes Loch in der Milchstraße, ESO-VLTI-Bilder der Sterne nahe des Zentrums der Milchstraße, Quelle: ESO

In ihren jüngsten Beobachtungen (Bilder gibt es hier), die zwischen März und Juli 2021 durchgeführt wurden, konzentrierte sich das Team auf präzise Messungen von Sternen, die sich dem schwarzen Loch nähern. Dazu gehört auch der Rekordhalter-Stern S29, der dem schwarzen Loch Ende Mai 2021 am nächsten kam. Er passierte es in einer Entfernung von nur 13 Milliarden Kilometern, was etwa dem 90-fachen Abstand zwischen Sonne und Erde entspricht, mit der atemberaubenden Geschwindigkeit von 8740 Kilometern pro Sekunde. Bisher wurde kein anderer Stern beobachtet, der so nahe am schwarzen Loch vorbeigezogen ist oder so schnell um dieses herum zog.

Die Messungen und Bilder des Teams wurden durch GRAVITY ermöglicht, ein einzigartiges Instrument, das die Kollaboration für das VLTI der ESO in Chile entwickelt hat. GRAVITY kombiniert das Licht aller vier 8,2-Meter-Teleskope des Very Large Telescope (VLT) der ESO mit einer Technik namens Interferometrie. Diese Technik ist komplex, „aber am Ende erhält man Bilder, die 20-mal schärfer sind als die der einzelnen VLT-Teleskope und die die Geheimnisse des galaktischen Zentrums preisgeben", sagt Frank Eisenhauer vom MPE, der Leiter von GRAVITY.

Indem wir Sterne auf engen Umlaufbahnen um Sagittarius A* nachverfolgen, können wir das Gravitationsfeld um das der Erde am nächsten gelegene massereiche schwarze Loch genau untersuchen, die Allgemeine Relativitätstheorie testen und die Eigenschaften des schwarzen Lochs bestimmen", erklärt Genzel. Die neuen Beobachtungen in Verbindung mit den früheren Daten des Teams bestätigen, dass die Sterne genau den Bahnen folgen, die die Allgemeine Relativitätstheorie für Objekte vorhersagt, die sich um ein schwarzes Loch mit der 4,30 Millionenfachen Masse der Sonne bewegen. Dies ist die bisher genaueste Schätzung der Masse des zentralen schwarzen Lochs in der Milchstraße. Den Forschern gelang es auch, die Entfernung zu Sagittarius A* auf 27.000 Lichtjahre zu präzisieren.


Anzeige

Um die neuen Bilder zu erhalten, verwendeten die Astronomen eine Technik des maschinellen Lernens, die sogenannte Informationsfeldtheorie. Sie erstellten ein Modell, wie die realen Quellen aussehen könnten, simulierten, wie GRAVITY sie sehen würde, und verglichen diese Simulation mit GRAVITY-Beobachtungen. Auf diese Weise konnten sie Sterne in der Umgebung von Sagittarius A* mit einer beispiellosen Tiefe und Genauigkeit finden und verfolgen. Zusätzlich zu den GRAVITY-Beobachtungen verwendete das Team auch Daten von NACO und SINFONI, zwei ehemaligen VLT-Instrumenten, sowie Messungen des Keck-Observatoriums und des Gemini-Observatoriums von NOIRLab in den USA.

GRAVITY wird im Laufe dieses Jahrzehnts zu GRAVITY+ weiterentwickelt, das ebenfalls auf dem VLTI der ESO installiert wird. Es wird die Empfindlichkeit weiter erhöhen, um schwächere Sterne noch näher am schwarzen Loch zu entdecken. Das Ziel des Teams ist es, Sterne zu finden, die so nahe sind, dass ihre Umlaufbahnen die durch die Rotation des schwarzen Lochs verursachten Gravitationswirkungen spüren würden. Das kommende Extremely Large Telescope (ELT) der ESO, das derzeit in der chilenischen Atacama-Wüste gebaut wird, wird es dem Team außerdem ermöglichen, die Geschwindigkeit dieser Sterne mit sehr hoher Präzision zu messen. „Mit den vereinten Kräften von GRAVITY+ und dem ELT werden wir erfahren können, wie schnell sich das schwarze Loch dreht", sagt Eisenhauer. „Das hat bisher noch niemand geschafft."

Weitere Informationen

Diese Forschungsergebnisse wurden in zwei Veröffentlichungen der GRAVITY-Kollaboration vorgestellt, die in Astronomy & Astrophysics erscheinen.

Artikel "The mass distribution in the Galactic Centre from interferometric astrometry of multiple stellar orbits" (doi: 10.1051/0004-6361/202142465). Weitere Bilder gibt es hier.

Ähnliche Artikel:
Verstecktes schwarzes Loch in einem Sternhaufen außerhalb unserer Galaxie gefunden
Schnellstes wachsendes schwarzes Loch entdeckt
Schwarzes Loch nur 1.000 Lichtjahre entfernt entdeckt
Ist Planet 9 ein 'primordiales schwarzes Loch'?
Schwarzes Loch frisst Sonne
Astronomen beobachten schwarzes Loch was Sonnen frisst
Erstes Foto eines Schwarzen Lochs
Wurde der erste Planet außerhalb der Milchstraße entdeckt?
Verdunklung von Beteigeuze durch heißes Material
Ähm, was ist eigentlich aus Supernova SN 1987A geworden?
Gigantische Explosion im All
Die 'Godzilla Galaxie'
Das Rätsel der 100 verschwundenen Sterne
Sonne mit 3 Exo-Planeten, einer möglicherweise bewohnbar
Kleine, einsame Galaxie als Zufallsfund


Anzeige

Dieser Beitrag wurde unter Wissenschaft abgelegt und mit verschlagwortet. Setze ein Lesezeichen auf den Permalink.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert